THE CONSERVATION OF ENERGY

• The total energy of a contained system is constant.
• This is an observed law, NOT a derived law.
• This law appears to be universally true.

THE FIRST LAW OF THERMODYNAMICS:

Specific Heat Capacity

Thermochemistry is the science of heat (energy) flow. A difference in temperature leads to energy transfer. The heat “lost” or “gained” is related to

a) sample mass
b) change in T and
c) specific heat capacity by

Specific heat capacity =

\[
\text{heat lost or gained by substance (J)}
\]

(mass, g)(T change, K)
If 25.0 g of Al cool from 310 °C to 37 °C, how many joules of heat energy are lost by the Al?

Specific heat cap. = C
= (heat gained or lost)/(mass)(ΔT) J/g K
= q/mΔT J/g·K
Specific Heat Capacity

If 25.0 g of Al cool from 310 °C to 37 °C, how many joules of heat energy are lost by the Al?

heat change = \(q = (\text{sp. ht.})(\text{mass})(\Delta T) = C \cdot m \cdot \Delta T \)

\[\Delta T = T_{\text{final}} - T_{\text{initial}} = 37 \, ^\circ C - 310 \, ^\circ C \]

\[q = (0.902 \, \text{J/g•K})(25.0 \, \text{g})(37 - 310) \, \text{K} \]

\[q = -6160 \, \text{J} \]

The minus sign means that heat flows out of Al.

Heat Transfer and Changes of State

Changes of state involve energy:

Ice → Water requires 333 J/g.

This is called the heat of fusion or the heat of melting.
Heat Transfer and Changes of State

Liquid \rightarrow Vapor
Requires energy (heat).
This is the reason
a) you cool down after swimming
b) you use water to put out a fire.

Heat and Changes of State

- 1 g of ethanol requires 850 J to evaporate at 25 °C (liq. to gas).
- To drop the air temperature from 55 °C to 25 °C in a car requires air to give up 3.6 kJ.
- How much ethanol must be evaporated to do this?
Heat and Changes of State

3.6 x 10^3 J (1 g/850 J)
= 4.2 g of ethanol

Heat and Changes of State

What quantity of heat is required to melt 500 g of ice at 0 °C and heat the water to steam at 100 °C?

- Specific heat of water = 4.2 J/g•K
- Heat of fusion of ice = 333 J/g
- Heat of vaporization = 2260 J/g
What quantity of heat is required to melt 500 g of ice at 0 °C and heat the water to steam at 100 °C?

1. To melt the ice:
 \[q = (500 \text{ g})(333 \text{ J/g}) = 1.67 \times 10^5 \text{ J} \]

2. To raise the water T from 0 °C to 100 °C:
 \[q = (500 \text{ g})(4.2 \text{ J/g•K})(100 - 0)\text{K} = 2.1 \times 10^5 \text{ J} \]

3. To evaporate the water at 100 °C:
 \[q = (500 \text{ g})(2260 \text{ J/g}) = 1.13 \times 10^6 \text{ J} \]

4. Total heat energy = 1.51 \times 10^6 \text{ J} = 1510 \text{ kJ}