Relationship of Electron Configuration and Region of the Periodic Table

Transition Metals
see Table 8.4
All 4th period elements have the configuration \([\text{argon}] (n - 1)d^y ns^x\) and so are “d-block” elements.

Transition Element Configurations
3d orbitals used for Sc - Zn (Table 8.4)

Lanthanides and Actinides
All these elements have the configuration \([\text{core}] (n - 2)f^z (n - 1)d^y ns^x\) and so are “f-block” elements.

Copper
Iron
Chromium
Lanthanide Element Configurations

4f orbitals used for Ce - Lu and 5f for Th - Lr (Table 8.3)

Ion Configurations

To form cations from elements, remove 1 or more e\(^{-}\) from the subshell of highest energy [or highest (n + l)].

\[
P\,[Ne] \, 3s^{2} \, 3p^{3} \quad \text{-} \quad 3e^{-} \rightarrow \quad P^{3+}\,[Ne] \, 3s^{2} \, 3p^{0}
\]

Ion Configurations

For transition metals, remove ns electrons and then (n - 1) electrons.

\[
Fe\,[Ar] \, 4s^{2} \, 3d^{6} \quad \text{loses 2 electrons} \rightarrow \quad Fe^{2+}\,[Ar] \, 4s^{0} \, 3d^{6}
\]

Ion Configurations

How do we know the configurations of ions? We can determine the magnetic properties of ions.

Ions with UNPAIRED ELECTRONS are PARAMAGNETIC.

Without unpaired electrons they are DIAMAGNETIC.
PERIODIC TRENDS

• Atomic and ionic size
• Ionization energy
• Electron affinity

General Periodic Trends

• Atomic and ionic size
• Ionization energy
• Electron affinity

Higher Z*. Electrons held more tightly.

Larger orbitals. Electrons held less tightly.

Atomic Size

• Size goes UP on going down a group. See Figure 8.10.
• Because electrons are added further from the nucleus, there is less attraction.
• Size goes DOWN on going across a period.

Atomic Radii

Size decreases across a period owing to an increase in Z*. Each added electron feels a greater and greater + charge.
Sizes of Transition Elements
See Figure 8.12

• The 3d subshell is inside the 4s subshell.
• 4s electrons feel a more or less constant Z^*.
• Sizes stay about the same and chemistries are similar!