Ch 2. Atoms and Elements

Introduction to Atoms

Feb. 6, 2006

ATOMIC COMPOSITION

• Protons
 > positive electrical charge
 > mass = \(1.672623 \times 10^{-24}\) g
 > relative mass = 1.007 atomic mass units (amu)

• Electrons
 > negative electrical charge
 > relative mass = 0.0005 amu

• Neutrons
 > no electrical charge
 > mass = 1.009 amu

Feb. 6, 2006

The modern view of the atom was developed by Ernest Rutherford (1871-1937).

Two of his students did an experiment in which they shot alpha particles (2 neutrons plus 2 protons) at a thin gold film. Some alpha particles scattered over large angles, demonstrating that atoms had massive, small nuclei.

See the book CD 2.10.

Feb. 6, 2006

In relative terms, if the nucleus were the size of a quarter (about 1 cm), one atom would have a radius of about \(10^5\) cm = 1000 m \(\sim\) \(1/2\) mile, roughly the size of the UMass campus.

nuclear radius is about 1 fm = \(10^{-15}\) m

atomic radius is about 100 pm = \(10^{-10}\) m
Atomic Number, Z

All atoms of the same element have the same number of protons in the nucleus, \(Z \)

\[
\begin{array}{c|c|c}
\text{atomic number} & \text{symbol} & \text{atomic weight} \\
13 & Al & 26.9815
\end{array}
\]

Mass Number, A

- C atom with 6 protons and 6 neutrons is the mass standard
- \(= 12 \) atomic mass units
- **Mass Number**
 - \(= \# \text{ protons} + \# \text{ neutrons} \)
- A boron atom can have
 - \(A = 5 \text{ p} + 5 \text{ n} = 10 \text{ amu} \)

\[
\begin{array}{c|c|c}
A & 10 \\
Z & 5 \\
\end{array}
\]

Isotopes

- Atoms of the same element (same \(Z \)) but different mass number (\(A \)).
- Boron-10 (\(^{10}\text{B}\)) has 5 p and 5 n.
- Boron-11 (\(^{11}\text{B}\)) has 5 p and 6 n.

\[
\begin{array}{c|c|c}
\text{Isotope} & \text{mass} & \text{number} \\
\hline
^{10}\text{B} & 5 \text{ p} & 5 \text{ n} \\
^{11}\text{B} & 5 \text{ p} & 6 \text{n}
\end{array}
\]

Mass spectrometer

- Ions of same charge but different mass are deflected by different amounts in the magnetic field.
- Can get the exact mass of each isotope of an element.
Isotope abundance

- Because of the existence of isotopes, the mass of a collection of naturally occurring atoms has an average value.
- Average mass = ATOMIC WEIGHT for the mixture of isotopes.
- Boron is 19.9% \(^{10}\text{B}\) and 80.1% \(^{11}\text{B}\). That is, of all the boron on earth, 80.1 percent is \(^{11}\text{B}\).
- Mass of \(^{10}\text{B}\) is 10.01 amu and of \(^{11}\text{B}\) is 11.01 amu
- Therefore, for boron, atomic weight
 \[
 = 0.199 (10.01 \text{ amu}) + 0.801 (11.01 \text{ amu}) = 10.8 \text{ amu}
 \]

This leaves us with 2 equations in 2 unknowns \((p_1\) and \(p_2\)), so we can do the algebra to solve them.

Substitute \(p_1 = 100 - p_2\) into the first equation:

\[
m = m_1 \times \left(\frac{100 - p_2}{100}\right) + m_2 \times \left(\frac{p_2}{100}\right)
\]

and then plug in the known values for \(m\), \(m_1\) and \(m_2\):

\[
1.00794 \text{ amu} = 1.0078 \text{ amu} \times \left(\frac{100 - p_2}{100}\right) + 2.0141 \text{ amu} \times \left(\frac{p_2}{100}\right)
\]

Solve:

\[
1.00794 = 1.0078p_2/100 + 0.0141p_2/100 = 1.0078 + 0.0063p_2/100
\]

or

\[
0.0001 = 0.0063p_2/100 \quad \Rightarrow \quad p_2 = 0.01%\]

PROBLEM: What is the natural abundance of \(^2\text{H}\)?
DATA: \(^1\text{H}\) mass is 1.0078 amu
\(^2\text{H}\) mass is 2.0141 amu
average mass of hydrogen is 1.00794

First, write down an equation for the average mass of hydrogen.

\[
m = m_1 \times \left(\frac{p_1}{100}\right) + m_2 \times \left(\frac{p_2}{100}\right)
\]

where \(m\) is mass and \(p\) is percentage

Now write down a second equation with \(p_1\) and \(p_2\) that totals to 100%.

\[
100 = p_1 + p_2
\]

Try to think about the chemistry before you think about the math:

Since the average mass of hydrogen is very close to that of \(^1\text{H}\), the dominant isotope of hydrogen will be \(^1\text{H}\), just as we saw in our solution (there is 0.01% \(^2\text{H}\) compared to 99.99% \(^1\text{H}\)).