Chem 111 10:10a section Final Exam Makeup

This exam is composed of 50 questions. Go initially through the exam and answer the questions you can answer quickly. Then go back and try the ones that are more challenging to you and/or that require calculations. Periodic table, solubility rules, and valuable constants are on the last page of the exam. Feel free to tear it off.

As discussed on the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.

1. The average molecular speed in a sample of N₂ gas is 408 m/s at 303 K. The average molecular speed in a sample of CO₂ gas at the same temperature is:
 1) 304 m s⁻¹ 2) 381 m s⁻¹ 3) 478 m s⁻¹ 4) 326 m s⁻¹ 5) 600 m s⁻¹

2. A 1.28 mol sample of Ar gas is confined in a 31.5 liter container at 26.5 °C. If 1.28 mol of F₂ gas is added while doubling both the volume and the temperature, the average kinetic energy per molecule will:
 1) decrease 2) remain the same 3) increase 4) not enough information 5) I don’t have a clue

3. A sample of Cl₂ gas is confined in a 2.0 liter container at 50 °C. Then 2.5 mol of He is added, holding both the volume and temperature constant. The pressure will increase because:
 1) As the number of molecule-wall collisions increases, the force per collision increases.
 2) With more molecules in the container, the molecules have higher average speeds.
 3) With more molecules per unit volume, the molecules hit the walls of the container more often.
 4) With higher average speeds, on average the molecules hit the walls of the container with more force.
 5) None of the Above
4. A 1.96 mol sample of CO₂ gas is confined in a 49.1 liter container at 32.3 °C. If the temperature of the gas sample is increased to 55.0 °C, holding the volume constant, the pressure will increase because:
 1) With lower average speeds, the molecules hit the walls of the container less often.
 2) As the average speed increases, the number of molecule-wall collisions decreases.
 3) With higher average speeds, on average the molecules hit the walls of the container with more force.
 4) None of the above

5. In our bodies, sugar is broken down with oxygen to produce water and carbon dioxide. How many moles of glucose (C₆H₁₂O₆) are required to react completely with 33.6 L of oxygen gas (O₂) according to the following reaction at 0 °C and 1 atm pressure? Note that the reaction may need balancing.
 \[\text{C}_6\text{H}_{12}\text{O}_6 (s) + \text{O}_2 (g) \rightarrow \text{CO}_2 (g) + \text{H}_2\text{O} (l) \]
 1) 6.0 mol 2) 0.250 mol 3) 0.319 mol 4) 0.637 mol 5) 7.13 mol

6. What is the total volume of gaseous products formed when 160 L of bromine trifluoride (BrF₃) react completely to form Br₂ and F₂? (All gases are at the same temperature and pressure, before and after.)
 1) 85 L 2) 190 L 3) 380 L 4) 320 L 5) 160 L

7. The temperature of the atmosphere on Mars can be as high as 27 °C at the equator at noon, and the atmospheric pressure is about 8.0 mm of Hg. If a spacecraft could collect 2.80 m³ of this atmosphere, compress it to a small volume, and send it back to earth, about how many moles would the sample contain?
 1) 4.3 mol 2) 97 mol 3) 54 mol 4) 0.13 mol 5) 1.2 mol
8. HNO₃ is (a table on page 1 provides a clue):
 1) a strong base 2) a weak base 3) a weak acid
 4) a strong acid 5) none of the above

9. The concentration of H⁺ in table wine (pH 3.4) is:
 1) 3.98x10⁻⁴ M 2) 3.40x10⁻⁹ M 3) 3.98x10⁴ M
 4) 3.40x10⁹ M 5) 1.00x10⁻⁷ M

10. Reactions in water that produce gases tend to be:
 1) unfavorable 2) ugly 3) favorable
 4) endothermic 5) exothermic

11. Mixing Na₂S with NH₄Cl in water leads to precipitation of:
 1) a S²⁻ salt 2) a Na⁺ salt 3) a Cl⁻ salt
 4) everything precipitates 5) no precipitation

12. You need to make an aqueous solution of 0.131 M ammonium sulfide for an experiment in lab, using a 250 mL volumetric flask. How much solid ammonium sulfide should you add?
 1) 2.23 g 2) 3.15 g 3) 1.24 g 4) 2.74 g 5) 9.11 g

13. Which of the following describes the compound Ba(NO₃)₂?
 1) The compound is ionic.
 2) If the compound dissolved in water it would not conduct electricity.
 3) If the compound dissolved in water it would be a non-electrolyte.
 4) The compound is molecular.
 5) Both (1) and (2)
14. Which reaction below is a redox reaction?

1) \(\text{NaOH (aq) + HNO}_3 \text{ (aq) } \rightarrow \text{NaNO}_3 \text{ (aq) + H}_2\text{O (l)} \)

2) \(\text{Na}_2\text{CO}_3 \text{ (aq) + 2 HClO}_4 \text{ (aq) } \rightarrow \text{CO}_2 \text{ (g) + H}_2\text{O (l) + 2NaClO}_4 \)

3) \(\text{CdCl}_2 \text{ (aq) + Na}_2\text{S (aq) } \rightarrow \text{CdS (s) + 2 NaCl (aq)} \)

4) \(\text{Zn(OH)}_2 \text{ (s) + H}_2\text{SO}_4 \text{ (aq) } \rightarrow \text{ZnSO}_4 \text{ (aq) + 2 H}_2\text{O (l)} \)

5) None of the above

15. The net ionic equation for the reaction of zinc sulfate and sodium hydroxide is:

1) \(\text{Zn}^{2+} \text{ (aq) + 2 OH}^- \text{ (aq) } \rightarrow \text{Zn(OH)}_2 \text{ (s) + Na}_2\text{SO}_4 \text{ (aq)} \)

2) \(\text{ZnSO}_4 \text{ (aq) + 2 NaOH (aq) } \rightarrow \text{Zn(OH)}_2 \text{ (aq) + Na}_2\text{SO}_4 \text{ (aq)} \)

3) \(\text{Zn}^{2+} \text{ (aq) + 2 OH}^- \text{ (aq) } \rightarrow \text{Zn(OH)}_2 \text{ (s)} \)

4) \(\text{Zn}^{2+} \text{ (aq) + 2 OH}^- \text{ (aq) } \rightarrow \text{Zn(OH)}_2 \text{ (aq)} \)

5) No net reaction occurs

16. In an endothermic process:

1) work is performed on the surroundings

2) heat is transferred to the surroundings

3) work is performed on the system

4) heat is transferred to the system

17. Change in internal energy is best described as:

1) \(\Delta H \)

2) \(q+w \)

3) \(w \)

4) \(q \)

5) \(\Delta G \)

18. A negative value of \(\Delta E \) means that:

1. heat is transferred to the surroundings

2. heat is transferred to the system

3. energy in the form of heat and/or work is transferred to the surroundings

4. energy in the form of heat and/or work is transferred to the system
19. An automobile engine generates 2160 Joules of heat that must be carried away by the cooling system. The internal energy changes by –2758 Joules in this process. How much work to push the pistons is available in this process?
 1) 598 J 2) 4918 J 3) 2758 J 4) 2160 J 5) 4320 J

20. Given the standard molar enthalpies of formation shown at right, determine \(\Delta H \) for the reaction:
\[
C_3H_8 (g) + 5 O_2 \rightarrow 3 CO_2 (g) + 4 H_2O (g)
\]

 1) +530.6 kJ mol\(^{-1}\) 2) –530.6 kJ mol\(^{-1}\) 3) +2043 kJ mol\(^{-1}\) 4) –2043 kJ mol\(^{-1}\) 5) not enough information to determine

<table>
<thead>
<tr>
<th>Subst</th>
<th>(\Delta H_f^\circ) (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_3H_8 (g)</td>
<td>-104.70</td>
</tr>
<tr>
<td>CO_2 (g)</td>
<td>-393.51</td>
</tr>
<tr>
<td>H_2O (g)</td>
<td>-241.83</td>
</tr>
<tr>
<td>H_2O (l)</td>
<td>-285.83</td>
</tr>
</tbody>
</table>

21. Given the information above, what is the heat required to vaporize water at 298 K?
 1) –40.65 kJ mol\(^{-1}\) 2) 44.00 kJ mol\(^{-1}\) 3) 40.65 kJ mol\(^{-1}\)
 4) –44.00 kJ mol\(^{-1}\) 5) not enough information to determine
22. A 45.5 g sample of copper at 99.8 °C is dropped into a beaker containing 125 g of water at 18.5 °C. When thermal equilibrium is reached, what is the final temperature of the copper? The specific heat capacities of water and copper are 4.184 and 0.385 J g⁻¹ K⁻¹, respectively.

1) 21.1 °C
2) 12.5 °C
3) 37.0 °C
4) 90.1 °C
5) 20.7 °C

23. Given the following information:

\[
\begin{align*}
\text{N}_2 (g) + 2\text{O}_2 (g) & \rightarrow \text{N}_2\text{O}_4 (g) \quad \Delta H^o = 9.2 \text{ kJ} \\
2\text{N}_2\text{O} (g) & \rightarrow 2\text{N}_2 (g) + \text{O}_2 (g) \quad \Delta H^o = -164.2 \text{ kJ}
\end{align*}
\]

what is the standard enthalpy change for the reaction:

\[
2\text{N}_2\text{O}(g) + 3\text{O}_2 (g) \rightarrow 2\text{N}_2\text{O}_4 (g) \quad \Delta H^o = ?
\]

1) 155 kJ mol⁻¹
2) 146 kJ mol⁻¹
3) –155 kJ mol⁻¹
4) –146 kJ mol⁻¹
5) not enough information to determine

24. Which of the following has the strongest bond?

1) HF
2) HCl
3) HBr
4) HI

25. Being careful to consider molecular orbital theory (or at least valence bond theory), which of the following has the shortest bond length?

1) B₂
2) C₂
3) N₂
4) O₂
5) F₂
26. The central CO bond in the molecule CH₃–CO–CH₃ is best described as a:
 1) triple bond
 2) double bond
 3) single bond
 4) ionic bond
 5) the molecule doesn’t exist

27. Draw the Lewis structure for CO²⁻. What is the bond order of the CO bond?
 1) triple
 2) double
 3) single

28. Draw the Lewis structure for XeOF₄ (Xe is the central atom). What is the hybridization on Xe?
 1) sp³d²
 2) sp³d³
 3) sp³d
 4) sp³
 5) sp²

29. The molecule XeOF₄ is:
 1) nonpolar
 2) polar
 3) can’t tell

30. A molecule has sp³d hybridization with one lone pair. The electron pair geometry of this molecule is:
 1) tetrahedral
 2) octahedral
 3) linear
 4) square pyramidal
 5) trigonal bipyramidal
31. Using molecular orbital theory, what is the bond order in the anion F_2^-?

1) 0.5
2) 1.0
3) 1.5
4) 2
5) 0

32. Consider the unbalanced equation:

$$\text{S}_2\text{O}_3^{2-} (\text{aq}) + \text{I}_2 (\text{aq}) \rightarrow \text{S}_4\text{O}_6^{2-} (\text{aq}) + \text{I}^- (\text{aq})$$

In the balanced equation, the coefficient in front of $\text{I}^- (\text{aq})$ is:

1) 1
2) 2
3) 3
4) 4
5) 6

33. Considering the same reaction

$$\text{S}_2\text{O}_3^{2-} (\text{aq}) + \text{I}_2 (\text{aq}) \rightarrow \text{S}_4\text{O}_6^{2-} (\text{aq}) + \text{I}^- (\text{aq})$$

A reducing agent in this reaction is:

1) $\text{S}_2\text{O}_3^{2-}$
2) I_2
3) neither

34. Which radiation below has the longest wavelength?

1) blue light (6.8×10^{14} Hz)
2) green light (6.0×10^{14} Hz)
3) red light (4.5×10^{14} Hz)
4) microwaves (2.4×10^9 Hz)
5) x-rays (5.0×10^{18} Hz)
35. What is the wavelength of visible light with frequency 1.00x10^{15} \text{ Hz}?
 1) 600 nm 2) 300 nm 3) 500 nm 4) 162 nm 5) 280 nm

36. Consider the diagram at right. The transition labeled B is best described as:
 1) emission 2) absorption 3) ionization 4) electron capture

37. The principle quantum number n specifies:
 1) orbital orientation 2) subshell orbital shape 3) transition probability 4) orbital karma 5) energy and distance from nucleus

38. The correct spectroscopic notation for the sulfur ion S^{-} is:
 1) 1s^{2}2s^{2}2p^{6}3s^{2}3p^{2} 2) 1s^{2}2s^{2}2p^{6}3s^{2}3p^{3}
 3) 1s^{2}2s^{2}2p^{6}3s^{2}3p^{4} 4) 1s^{2}2s^{2}2p^{6}3s^{2}3p^{5}
 5) 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}

39. Which of the following elements has the greatest difference between the first and second ionization energies?
 1) Mg 2) Si 3) P 4) Na 5) Cl

40. Which list below is in order of increasing electron affinity?
 1) Ne < F < O < N 2) Si < P < S < Cl
 3) F < Cl < Br < I 4) Be < Mg < Ca < Sr
 5) none of the above
41. Which list below is in order of increasing ionization energy?
 1) Cl < S < P < Si
 2) Ne < F < O < N
 3) F < Cl < Br < I
 4) Sr < Ca < Mg < Be
 5) none of the above

42. Which molecule below does not exist?
 1) CaF₃
 2) BeF₂
 3) MgO
 4) KCl
 5) BeCl₂

43. The molecule HF can be thought of as having both ionic and covalent character. Given that statement, which of the following is likely to best describe the charge on each atom?

 | | |
 |---|---|---|
 | H | F |
 | 1) +1.0 | -1.0 |
 | 2) +0.7 | -0.7 |
 | 3) 0.0 | 0.0 |
 | 4) -0.7 | +0.7 |
 | 5) -1.0 | +1.0 |

44. What is the most common charge of ions formed from Fr⁻?
 1) +1
 2) +2
 3) -1
 4) -2
 5) -3

45. What is the formula of the compound formed between the ions Co³⁺ and O²⁻?
 1) CoO
 2) Co₂O
 3) Co₂O₃
 4) Co₃O₂
 5) CoO₂

46. What is the molar mass of nitrogen trioxide?
 1) 62 g/mol
 2) 32 g/mol
 3) 44 g/mol
 4) 16 g/mol
 5) 46 g/mol
47. A sample of citric acid, $\text{C}_6\text{H}_8\text{O}_7$, contains 0.153 mol of the compound. What is the mass of this sample, in grams?

1) 3.02 g
2) 13.7 g
3) 20.2 g
4) 0.0730 g
5) 29.4 g

48. What is the (mass) percent composition of C in citric acid, $\text{C}_6\text{H}_8\text{O}_7$?

1) 6.87%
2) 4.20%
3) 37.5%
4) 28.5%
5) 6.00%

49. Ethylene glycol, $\text{C}_2\text{H}_6\text{O}_2$, is an ingredient in automobile antifreeze. Its density is 1.11 g/cm3 at 20°C. If you need exactly 1000 mL of ethylene glycol, what mass of the compound, in grams, is required?

1) 901 g
2) 90.1 g
3) 111 g
4) 1000 g
5) 1110 g

50. The correct designator for this course is:

1) SOM 555
2) Chem 363
3) Chem 256
4) Sports 1
5) Chem 111
\[
PV = nRT \quad K.E. = \frac{1}{2} mu^2 \\
E = h \nu = \frac{hc}{\lambda}
\]

1 mL = 1 cm\(^3\)
1 atm = 760 mm Hg
\[\Delta H_{\text{vap}}(H_2O) = 40.65 \text{ kJ mol}^{-1}\]
\[\Delta H_{\text{fus}}(H_2O) = 6.00 \text{ kJ mol}^{-1}\]
\[\Delta E = q + w = \Delta H - P\Delta V\]
\[h = 6.626 \times 10^{-34} \text{ J s}\]
\[c = 2.998 \times 10^8 \text{ m s}^{-1}\]
\[N = 6.022 \times 10^{23} \text{ mol}^{-1}\]
\[R = 0.0820 \text{ L atm K}^{-1} \text{ mol}^{-1}\]
\[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}\]

Solubility Rules for some ionic compounds in water

Soluble Ionic Compounds

1. All sodium (Na\(^+\)), potassium (K\(^+\)), and ammonium (NH\(_4^+\)) salts are SOLUBLE.
2. All nitrate (NO\(_3^-\)) salts are SOLUBLE.
3. All sulfate (SO\(_4^{2-}\)) salts are SOLUBLE.
4. All chloride (Cl\(^-\)), bromide (Br\(^-\)), and iodide (I\(^-\)) salts are SOLUBLE -- EXCEPT those also containing: lead, silver, or mercury (I) (Pb\(^{2+}\), Ag\(^+\), Hg\(_2\)\(^{2+}\)) which are NOT soluble.
5. Not Soluble Ionic Compounds

Not Soluble Ionic Compounds

5. Hydroxide (OH\(^-\)) and oxide (O\(^{2-}\)) compounds are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, or barium (Na\(^+\), K\(^+\), Ba\(^{2+}\)) which are soluble.
6. Sulfide (S\(^2-\)) salts are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, ammonium, or barium (Na\(^+\), K\(^+\), NH\(_4^+\), Ba\(^{2+}\)) which are soluble.
7. Carbonate (CO\(_3^{2-}\)) and phosphate (PO\(_4^{3-}\)) salts are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, or ammonium (Na\(^+\), K\(^+\), NH\(_4^+\)), which are soluble.

PERIODIC TABLE OF THE ELEMENTS

<table>
<thead>
<tr>
<th>1A</th>
<th>2A</th>
<th>3B</th>
<th>4B</th>
<th>5B</th>
<th>6B</th>
<th>7B</th>
<th>8B</th>
<th>8B</th>
<th>8B</th>
<th>1B</th>
<th>2B</th>
<th>3A</th>
<th>4A</th>
<th>5A</th>
<th>6A</th>
<th>7A</th>
<th>8A</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>1.008</td>
<td>6.022</td>
<td>1.008</td>
<td>6.022</td>
<td></td>
</tr>
<tr>
<td>54.10</td>
<td>6.939</td>
<td>9.012</td>
<td></td>
</tr>
<tr>
<td>11.29</td>
<td>24.31</td>
<td>22.99</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
</tr>
</tbody>
</table>

Name: _______________________________