Chem 111
9:05a section
Evening Exam #1

This exam is composed of 20 questions, 5 of which require mathematics that might require a calculator. Go initially through the exam and answer the questions you can answer quickly. Then go back and try the ones that are more challenging to you and/or that require calculations.

As discussed on the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.

\[
E = h\nu = \frac{hc}{\lambda} \\
E_{n-\text{atom}}^H = -\frac{R_Hhc}{n^2} \\
1 \text{ mL} = 1 \text{ cm}^3
\]

| Some common ions: |
|-------------------|-------------------|-------------------|-------------------|
| PO$_4^{3-}$ | CN$^-$ | CH$_2$CO$_2^-$ | NO$_2^-$ | NO$_3^-$ | CO$_2^-$ | SO$_3^{2-}$ | SO$_4^{2-}$ |

\[
h = 6.626 \times 10^{-34} \text{ J s} \\
c = 2.998 \times 10^8 \text{ m s}^{-1} \\
N = 6.022 \times 10^{23} \text{ mol}^{-1} \\
R_H = 1.097 \times 10^7 \text{ m}^{-1}
\]

1. What is the charge of the most common ion formed from S?
 1) −1
 2) −2
 3) +1
 4) +2
 5) +3
 (2) -2 (OWL question)

2. What is the charge of the most common ion formed from Ba?
 1) +1
 2) +2
 3) −1
 4) −2
 5) −3
 (2) +2 (OWL question)

3. The correct molecular formula for the molecule at right is:
 1) C$_3$OH$_8$
 2) C$_3$OH$_7$
 3) C$_3$O$_2$H$_7$
 4) C$_3$OH$_6$
 (1)

4. Which choice below best (most accurately and completely) describes a proton?
 1) a charged particle
 2) a wave
 3) a negatively charged particle with both wave and particle properties
 4) a small particle that lies at the heart of the nucleus of an atom
 5) a positively charged particle that resides at the nucleus of an atom
 (5)
5. **CCl₄** is:
 1) an element
 2) an ionic compound
 3) a nonionic compound
 4) a homogeneous mixture
 5) a heterogeneous mixture
 (3) (OWL question)

6. What is the formula of the ionic compound expected to form between the ions Be²⁺ and SO₄²⁻?
 1) Be₂(SO₄)₃
 2) Be₂SO₄
 3) Be(SO₄)₂
 4) BeSO₄
 5) Be₂SO₂
 (4) BeSO₄ - Be²⁺ + SO₄²⁻ (OWL question)

7. What is the formula of the ionic compound formed in the reaction of elemental Ca and F⁻?
 1) CaF
 2) Ca₂F
 3) Ca₂F₃
 4) Ca₃F₂
 5) CaF₂
 (5) CaF₂ - Ca²⁺ + 2F⁻ (OWL question)

8. What is the formula of the ionic compound formed between the ions Cr²⁺ and NO₂⁻?
 1) CrNO₂
 2) Cr₂NO₂
 3) Cr(NO₂)₃
 4) Cr(NO₂)₅
 5) Cr₂(NO₂)₅
 (3) Cr(NO₂)₃ - Cr³⁺ + 3NO₂⁻ (OWL question)

9. Which of the following is **not** an ionic compound?
 1) Ca(CH₃CO₂)₂
 2) NaCN
 3) CO
 4) AgO
 5) AgCl
 (3) CO - C does not want to have a charge of +2

10. What is the formula for the **hydrogen carbonate** ion?
 1) HCO₃⁻
 2) H₂CO₃⁻
 3) H₃CO₃
 4) HCO₃⁻
 5) CO₃²⁻
 (1) HCO₃⁻ (OWL question)

11. What is the molar mass of **selenium (Se) dioxide**?
 1) 64 g/mol
 2) 111 g/mol
 3) 96 g/mol
 4) 16 g/mol
 5) 44 g/mol
 (2) SeO₂ = \left(\frac{78.96}{\text{mol}} \right) + 2 \left(\frac{15.9994}{\text{mol}} \right) = 111 \frac{\text{g}}{\text{mol}} (OWL question)
12. Which of the following is a valid empirical formula?

1) \(\text{Co}_8(\text{SO}_3)_{24}\)
2) \(\text{Co}_4(\text{SO}_3)_6\)
3) \(\text{Co}_6(\text{SO}_3)_9\)

4) none is valid
5) all are valid

(4)

13. A sample of citric acid, \(\text{C}_6\text{H}_9\text{O}_7\), contains 0.104 mol of the compound. What is the mass of this sample, in grams?

1) 20.1 g
2) 12.5 g
3) 37.3 g
4) 0.0730 g
5) 18.7 g

First we need the molar mass of \(\text{C}_6\text{H}_9\text{O}_7\):

\[
6(\text{molar mass of C}) + 9(\text{molar mass of H}) + 7(\text{molar mass of O}) =
\]

\[
6\left(12.011 \frac{g}{\text{mol}}\right) + 9\left(1.0079 \frac{g}{\text{mol}}\right) + 7\left(15.9994 \frac{g}{\text{mol}}\right) = 193.1 \frac{g}{\text{mol}}
\]

Use that to calculate the mass:

(1) \((0.104 \text{mol})\left(\frac{193.1 \text{g}}{\text{mol}}\right) = 20.1 \text{g}\) (OWL question)

14. What is the (mass) percent composition of \(\text{C}\) in \(\text{C}_6\text{H}_9\text{O}_7\)?

1) 9%
2) 37.3%
3) 61.2%
4) 81.8%
5) 60.0%

Mass of \(\text{C}\) in 1 mol of the compound: \((6\text{mol})(12.01 \frac{g}{\text{mol}}) = 72.1 \text{g}\)

Mass of 1 mol of the compound:

\[
6\left(12.011 \frac{g}{\text{mol}}\right) + 9\left(1.0079 \frac{g}{\text{mol}}\right) + 7\left(15.9994 \frac{g}{\text{mol}}\right) = 193.1 \frac{g}{\text{mol}}
\]

(2) Percent composition: \(\frac{72.1 \text{g C}}{193.1 \text{g} \text{C}_6\text{H}_9\text{O}_7} \times 100\% = 37.3\%\) (OWL question)

15. You’ve decided you don’t like Chemistry after all and have decided to travel Europe instead. You’re driving a rental car through France and see petrol selling at 0.85 euros per liter.

How much does petrol cost in U.S. dollars per gallon?

1) $3.87/gal
2) $0.69/gal
3) $2.44/gal
4) $3.15/gal
5) $4.39/gal

\[
(\frac{0.85 \text{euro}}{\text{Liter}})\left(\frac{1.0 \text{US dollar}}{0.88 \text{euro}}\right) = \frac{4.546 \text{L}}{\text{gallon}} = 4.39 \text{US dollars/gallon}
\]

0.88 euro = 1.0 US dollar
4.546 liters = 1 gallon
16. Which radiation below has the highest energy (don’t use your calculator!)?
 1) blue light (6.8x10^{14} Hz)
 2) green light (6.0x10^{14} Hz)
 3) red light (4.5x10^{14} Hz)
 4) microwaves (2.4x10^{9} Hz)
 5) x-rays (5.0x10^{18} Hz)

(5) It has the highest frequency. Remember that
\[E = h\nu \]

17. What is the wavelength of ultraviolet light with frequency 1.20x10^{15} Hz?
 1) 209 nm
 2) 300 nm
 3) 500 nm
 4) 162 nm
 5) 250 nm

(5)
\[\lambda = \left(\frac{2.9998 \times 10^8 m}{s} \right) \left(\frac{1}{1.20 \times 10^{15} Hz \times 1} \right) = 2.50 \times 10^{-7} m \]
\[= 2.50 \times 10^{-7} m \left(\frac{10^9 nm}{m} \right) = 250 nm \]

(OWL question)

18. What is the wavelength of the photon emitted from a hydrogen atom when the electron goes from n=9 to n=3?
 The Rydberg constant R for the hydrogen atom is 1.097x10^7 m^{-1}.
 1) 0.023 nm
 2) 397 nm
 3) 434 nm
 4) 923 nm
 5) 22 nm

\[E = E_f - E_i = \left(-\frac{Rhc}{n_f^2} \right) - \left(-\frac{Rhc}{n_i^2} \right) = \frac{hc}{\left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)} \]

\[\lambda = \frac{hc}{E} = \frac{hc}{\left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)} = \frac{1}{\left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)} = \frac{1}{\left(-\left(1.097 \times 10^7 m^{-1} \right) \left(\frac{1}{3^2} - \frac{1}{9^2} \right) \right)} = \frac{1}{\left(-\left(1.097 \times 10^7 m^{-1} \right) \left(\frac{1}{3^2} - \frac{1}{9^2} \right) \right)} = \frac{1}{\left(-\left(1.097 \times 10^7 m^{-1} \right) \left(\frac{1}{81} \right) \right) = \left(-\left(1.097 \times 10^7 m^{-1} \right) \left(0.09876 \right) \right) = -9.23 \times 10^{-7} m = 923 nm \]

(4) What happened to the negative sign? A negative wavelength makes no sense. This reflects that E is negative. That is, energy is emitted in this transition. Had we done the longer calculation (solved for E first), we would have dropped the negative sign at that point.
19. In the above question, is light emitted or absorbed?
 1) absorbed 2) emitted 3) neither absorbed nor emitted 4) can’t tell

(2) You can get this from the calculation above, or more simply, if you note that higher “n” values are at higher energy, then this is clearly a transition from higher to lower energy – energy must be given off (emitted as a photon).

20. What is the catalog number for this class?
 1) 241 2) 111 3) 222 4) 3.14159 5) 68.6 g

(2)