Why write electrons in 4 pairs?
Why write electrons in 4 pairs?

[He]2s^22p^5

[He]2s^22p_x^22p_y^22p_z^1
Why write electrons in 4 pairs?

[He]2s^22p^5 [He]2s^22p_x^22p_y^22p_z^1

F
1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
3. Place one pair of electrons between each pair of bonded atoms, forming a bond
4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms
 (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons

3. Place one pair of electrons between each pair of bonded atoms,
 forming a bond

4. Use remaining electron pairs as lone pairs around each terminal
 atom, to complete its octet

5. Place electrons around the central atom. If you run out, “share”
 electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons

3. Place one pair of electrons between each pair of bonded atoms, forming a bond

4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet

5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms

\[\text{H}_2\text{CO} \]

\[\text{H} \quad \text{H} \quad \text{C} \quad \text{O} \]
Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons

3. Place one pair of electrons between each pair of bonded atoms, forming a bond

4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet

5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms

H₂CO

H – terminal
Up to 4 bonds

C – internal
Up to 2 bonds

O – internal?

Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
3. Place one pair of electrons between each pair of bonded atoms, forming a bond
4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms

\[\text{H}_2\text{CO} \]

H – terminal
C – internal
 Up to 4 bonds
O – internal?
 Up to 2 bonds
 So try C in middle
Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons

3. Place one pair of electrons between each pair of bonded atoms, forming a bond

4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet

5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms

\[H_2CO \]

\[H \rightarrow 1s^1 \]
\[H \rightarrow 1s^1 \]
\[C \rightarrow [\text{He}]2s^22p^2 \]
\[O \rightarrow [\text{He}]2s^22p^4 \]

12 e⁻
1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons

3. **Place one pair of electrons between each pair of bonded atoms, forming a bond**

4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet

5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons

3. **Place one pair of electrons between each pair of bonded atoms, forming a bond**

4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet

5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
3. **Place one pair of electrons between each pair of bonded atoms, forming a bond**
4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms

\[
\text{H}_2\text{CO}^{12 \text{ e}^-}
\]

\[
\text{H}-\text{C} \quad \text{O}
\]

\[
\text{H}
\]
Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
3. **Place one pair of electrons between each pair of bonded atoms, forming a bond**
4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 • Some elements work only as terminal atoms (H, F, Cl, etc)
 • Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms
 (don’t forget charge!)
 • Add numbers of all valence electrons
 • If negatively charged, add the appropriate number of electrons
 • If positively charged, subtract the appropriate number of electrons

3. **Place one pair of electrons between each pair of bonded atoms, forming a bond**

4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet

5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons

3. Place one pair of electrons between each pair of bonded atoms, forming a bond

4. **Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet**

5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
3. Place one pair of electrons between each pair of bonded atoms, forming a bond
4. **Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet**
5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons

3. Place one pair of electrons between each pair of bonded atoms, forming a bond

4. **Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet**

5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
3. Place one pair of electrons between each pair of bonded atoms, forming a bond
4. **Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet**
5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
3. Place one pair of electrons between each pair of bonded atoms, forming a bond
4. **Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet**
5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms
 (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons

3. Place one pair of electrons between each pair of bonded atoms, forming a bond

4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet

5. **Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms**

\[-\text{H}_2\text{C}=\text{O}^{12}\text{e}^->\]
Drawing Lewis Structures

The Octet Rule

1. Determine the arrangement of atoms in the molecule
 • Some elements work only as terminal atoms (H, F, Cl, etc)
 • Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 • Add numbers of all valence electrons
 • If negatively charged, add the appropriate number of electrons
 • If positively charged, subtract the appropriate number of electrons

3. Place one pair of electrons between each pair of bonded atoms, forming a bond

4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet

5. **Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms**
1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
3. Place one pair of electrons between each pair of bonded atoms, forming a bond
4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

Slightly alternate route
Drawing Lewis Structures

The Octet Rule

Slightly alternate route

1. Determine the arrangement of atoms in the molecule
 • Some elements work only as terminal atoms (H, F, Cl, etc)
 • Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms
 (don’t forget charge!)
 • Add numbers of all valence electrons
 • If negatively charged, add the appropriate number of electrons
 • If positively charged, subtract the appropriate number of electrons

3. Place one pair of electrons between each pair of bonded atoms, forming a bond

4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet

5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

Slightly alternate route

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons

3. **Place one pair of electrons between each pair of bonded atoms, forming a bond**

4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet

5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms

H₂CO

12 e⁻
Drawing Lewis Structures

The Octet Rule

Slightly alternate route

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons

3. **Place one pair of electrons between each pair of bonded atoms, forming a bond**

4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet

5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

Slightly alternate route

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons

3. **Place one pair of electrons between each pair of bonded atoms, forming a bond**

4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet

5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

Slightly alternate route

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons

3. Place one pair of electrons between each pair of bonded atoms, forming a bond

4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet

5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

Slightly alternate route

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
3. **Place one pair of electrons between each pair of bonded atoms, forming a bond**
4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms
Drawing Lewis Structures

The Octet Rule

Slightly alternate route

1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)

2. Determine the total number of valence electrons in all atoms (don’t forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons

3. Place one pair of electrons between each pair of bonded atoms, forming a bond

4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet

5. Place electrons around the central atom. If you run out, “share” electron pairs from terminal atoms

H₂CO

12 e⁻
Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

Octet of electrons around the C atom (four in each of two double bonds)
Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

Octet of electrons around the C atom (four in each of two double bonds)
\[\text{Octet of electrons around each N atom (six in triple bond and two in lone pair)} \]

\[\text{Octet of electrons around each O atom (four in double bond and four in lone pairs)} \]

\[\text{Octet of electrons around the C atom (four in each of two double bonds)} \]
Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

Octet of electrons around the C atom (four in each of two double bonds)
Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

Octet of electrons around the C atom (four in each of two double bonds)
Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

Octet of electrons around the C atom (four in each of two double bonds)
Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around the C atom (four in each of two double bonds)
Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

Octet of electrons around the C atom (four in each of two double bonds)
Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

Octet of electrons around the C atom (four in each of two double bonds)
Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

Octet of electrons around the C atom (four in each of two double bonds)
Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

Octet of electrons around the C atom (four in each of two double bonds)
Move lone pair to create double bond and satisfy octet for C.

Single bond

Lone pair

Two shared pairs; double bond
Move lone pairs to create double bonds and satisfy the octet for N.
Which is the best Lewis structure

1) :C ≡ O:

2) :C ≡ Ō:

3) :C ≡ Ō:
Which is the best Lewis structure

1) C ≡ O: 10 e⁻
 C – [He]2s²2p²
 O – [He]2s²2p⁴

2) C ≡ O: 12 e⁻
 Too many electrons

3) C ≡ O: 10 e⁻
 Incomplete Octet (6)
Which is the best Lewis structure

1) \[:C \equiv \equiv N:\]

2) \[:C \equiv N:\]

3) \[:C \equiv N:\]
Which is the best Lewis structure

1) [\(:C\equiv\equiv N:\)] 10 e\(^{-}\)

C – [He]2s\(^2\)2p\(^2\)
N – [He]2s\(^2\)2p\(^3\)

2) [\(:C\equiv\equiv N:\)] 12 e\(^{-}\)

Plus 1 e\(^{-}\)
Too many electrons

3) [\(:C\rightarrow N:\)] 14 e\(^{-}\)

Too many electrons
Isoelectronic species
(10 electrons)

\[
\begin{align*}
\text{N} & \equiv \text{N} & & \equiv \text{O} & & \equiv \text{N} \\
\text{N} & \equiv \text{N} & & \equiv \text{O} & & \equiv \text{N} \\
\text{C} & \equiv \text{O} & & \equiv \text{C} & & \equiv \text{N} \\
\text{N} & \equiv \text{N} & & \equiv \text{O} & & \equiv \text{C} \\
\text{N} & \equiv \text{N} & & \equiv \text{O} & & \equiv \text{C} \\
\end{align*}
\]

N – [He]2s\(^2\)2p\(^3\)
N – [He]2s\(^2\)2p\(^3\)
C – [He]2s\(^2\)2p\(^2\)
C – [He]2s\(^2\)2p\(^2\)
N – [He]2s\(^2\)2p\(^3\)
C – [He]2s\(^2\)2p\(^2\)
N – [He]2s\(^2\)2p\(^3\)
C – [He]2s\(^2\)2p\(^2\)

2+3+2+3
2+2+2+4
2+2+2+3+1

Plus 1 e\(^-\)
Table 8.3 Lewis Structures of Common Hydrogen-Containing Molecules and Ions of Second-Period Elements

<table>
<thead>
<tr>
<th>Group 4A</th>
<th>Group 5A</th>
<th>Group 6A</th>
<th>Group 7A</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄ methane</td>
<td>NH₃ ammonia</td>
<td>H₂O water</td>
<td>HF hydrogen fluoride</td>
</tr>
<tr>
<td>C₂H₆ ethane</td>
<td>N₂H₄ hydrazine</td>
<td>H₂O₂ hydrogen peroxide</td>
<td></td>
</tr>
<tr>
<td>C₂H₄ ethylene</td>
<td>NH₄⁺ ammonium ion</td>
<td>H₃O⁺ hydronium ion</td>
<td></td>
</tr>
<tr>
<td>C₂H₂ acetylene</td>
<td>NH₂⁻ amide ion</td>
<td>OH⁻ hydroxide ion</td>
<td></td>
</tr>
</tbody>
</table>
Start to think about the common elements like this

Group 4A

\[\text{C} \]

Group 5A

\[\text{N} \]

Group 6A

\[\text{O} \]

Group 7A

\[\text{F} \]

© Brooks/Cole, Cengage Learning