This exam is composed of 25 questions. Go initially through the exam and answer the questions you can answer quickly. Then go back and try the ones that are more challenging to you and/or that require calculations.

As discussed on the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.

E = hν = \frac{hc}{\lambda}

h = 6.626 \times 10^{-34} \text{ J s}

c = 2.998 \times 10^8 \text{ m s}^{-1}

1 \text{ mL} = 1 \text{ cm}^3

N = 6.022 \times 10^{23} \text{ mol}^{-1}

1. Which of the following has the shortest bond length?
 1) HF 2) HCl 3) HBr 4) HI

2. Which of the following has the lowest bond energy?
 1) HF 2) HCl 3) HBr 4) HI

3. Which of the following has the shortest bond length?
 1) B\textsubscript{2} 2) C\textsubscript{2} 3) N\textsubscript{2} 4) O\textsubscript{2} 5) F\textsubscript{2}

4. The CO bond in the molecule CH\textsubscript{2}O is best described as a:
 1) triple bond 2) double bond 3) single bond 4) ionic bond 5) the molecule doesn’t exist
5. Draw the Lewis structure for \(\text{NO}^- \). Draw a stable resonance structure that provides a full octet to each of N and O. In this resonance structure, what is the bond order for the NO bond?

1) single 2) double 3) triple

6. Using the simplified molecular orbital diagram at right, predict the true bond order in \(\text{NO}^- \).

1) single 2) double 3) triple 4) 1.5 5) 2.5

7. Draw a stable resonance structure for \(\text{NO}_2^+ \). (one that provides a full octet to each atom). In this resonance structure, what are the bond orders for the NO bonds?

1) two single 2) two double 3) two triple 4) one single, one double 5) one double, one triple

8. In the molecule \(\text{NO}_2^+ \), the actual bond order for each NO bond is:

1) 1 2) 2 3) 3 4) 1.5 5) 1 for one bond and 2 for the other

9. In the molecule \(\text{NO}_2^+ \), the actual charge on each O is:

1) 0 2) +1 3) −1 4) −0.5 5) −1 for one O and 0 for the other O
10. Draw the Lewis structure for \(\text{XeF}_4 \). The molecular geometry is:
 1) square planar 2) square pyramidal 3) trigonal bipyramidal
 4) octahedral 5) none of the above

11. The molecule \(\text{XeF}_4 \) is:
 1) polar 2) nonpolar 3) can’t tell

12. Draw the Lewis structure for \(\text{XeOF}_4 \) (Xe is the central atom). What is the hybridization on Xe?
 1) sp\(^3\)d\(^3\) 2) sp\(^3\)d\(^2\) 3) sp\(^3\)d 4) sp\(^3\) 5) sp\(^2\)

13. The picture at right depicts which type of orbital hybridization?
 1) sp 2) sp\(^2\) 3) sp\(^3\) 4) sp\(^4\) 5) none of the above

14. In the orbital hybridization above, how many atomic orbitals were used to create the resulting molecular orbitals?
 1) 1 2) 2 3) 3 4) 4 5) 5

15. A molecule has sp\(^3\)d\(^2\) hybridization with one lone pair. The electron pair geometry of this molecule is:
 1) tetrahedral 2) octahedral 3) linear
 4) square pyramidal 5) trigonal bipyramidal

16. What hybrid orbitals make up the sigma bond between C2 and C3 in propylene, \(\text{CH}_2\text{CHCH}_3 \)?
 1) sp & sp\(^3\) 2) sp & sp\(^2\) 3) sp\(^2\) & sp\(^3\) 4) sp\(^2\) & sp\(^2\) 5) sp\(^3\) & sp\(^3\)
17. Which of the following molecular orbital representations correctly describes C_2–?

![Molecular orbitals](image)

(1) (2) (3) (4) (5)

18. From molecular orbital theory, the bond order in C_2– is:
1) single 2) double 3) 0.5 4) 1.5 5) 3.5

19. Consider the molecular orbital diagram shown at right:
This energy diagram best describes:
1) C_2 2) CN^- 3) CN^+ 4) N_2

![Molecular orbital diagram](image)

20. In the diagram at right, the π bonding orbitals are best described as:
1) all C 2) all N 3) more C than N 4) more N than C 5) equal mixture of C and N

![Bonding orbitals](image)

21. Using molecular orbital theory, what is the bond order in the anion N_2–?
1) 1 2) 1.5 3) 2 4) 2.5 5) 3
Solubility Rules for some ionic compounds in water

Soluble Ionic Compounds
1. All sodium (Na⁺), potassium (K⁺), and ammonium (NH₄⁺) salts are SOLUBLE.
2. All nitrate (NO₃⁻), acetate (CH₃CO₂⁻), chlorate (ClO₃⁻), and perchlorate (ClO₄⁻) salts are SOLUBLE.
3. All chloride (Cl⁻), bromide (Br⁻), and iodide (I⁻) salts are SOLUBLE -- EXCEPT those also containing: lead, silver, or mercury (I) (Pb²⁺, Ag⁺, Hg₂²⁺) which are NOT soluble.
4. All sulfate (SO₄²⁻) salts are SOLUBLE -- EXCEPT those also containing: calcium, silver, mercury (I), strontium, barium, or lead (Ca²⁺, Ag⁺, Hg₂²⁺, Sr²⁺, Ba²⁺, Pb²⁺) which are NOT soluble.

Not Soluble Ionic Compounds
5. Hydroxide (OH⁻) and oxide (O²⁻) compounds are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, or barium (Na⁺, K⁺, Ba²⁺) which are soluble.
6. Sulfide (S²⁻) salts are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, ammonium, or barium (Na⁺, K⁺, NH₄⁺, Ba²⁺) which are soluble.
7. Carbonate (CO₃²⁻) and phosphate (PO₄³⁻) salts are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, or ammonium (Na⁺, K⁺, NH₄⁺), which are soluble.

22. Mixing Na₂CO₃ with CaCl₂ in water leads to precipitation of:
 1) a CO₃²⁻ salt
 2) a Na⁺ salt
 3) a Cl⁻ salt
 4) everything precipitates
 5) no precipitation

23. Write the balanced, net ionic equation corresponding to the unbalanced equation:
 \[\text{AlCl}_3 + \text{Na}_3\text{PO}_4 \rightarrow \text{AlPO}_4 + \text{NaCl} \]
 The coefficient in front of Na⁺ (aq) is:
 1) 1
 2) 2
 3) 3
 4) 4
 5) 0 (Na⁺ doesn’t occur in the net ionic equation)
24. Write the balanced, net ionic equation corresponding to the unbalanced equation:

\[\text{CaCl}_2 + \text{Na}_2\text{CO}_3 \rightarrow \text{CaCO}_3 + \text{NaCl} \]

In the net ionic equation, the coefficient in front of \(\text{Ca}^{2+} \) (aq) is:

1) 1 2) 2 3) 3 4) 4 5) 0 (\(\text{Ca}^{2+} \) doesn’t occur in the net ionic equation)

25. The correct designator for this course is:

1) Chem 111 2) Chem 363 3) Econ 3.33 4) Sports 01