This exam is composed of 40 questions.

As discussed in the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.

I hereby state that all answers on this exam are my own and that I have neither gained unfairly from others nor have I assisted others in obtaining an unfair advantage on this exam.

__
Signature

PERIODIC TABLE OF THE ELEMENTS
Answer questions 1-31 by filling out the bubble sheet

1. (2 points) Propanoic acid and methyl acetate are constitutional isomers and both are liquids at room temperature. Which has the lower boiling point?

 1) propanoic acid
 2) methyl acetate
 3) they have the same boiling point

2. (2 points) Which listing below correctly orders the boiling points of the indicated molecules?

 1) 1-butanol > propanoic acid > diethyl ether
 2) propanoic acid > diethyl ether > 1-butanol
 3) propanoic acid > 1-butanol > diethyl ether
 4) diethyl ether > propanoic acid > 1-butanol
 5) 1-butanol > diethyl ether> propanoic acid

3. (2 points) The products of the following reaction are:

 \[
 \begin{align*}
 \text{O} & \quad + \quad \text{NaOH} \\
 \text{HCOCH}_2\text{CH}_3 & \quad \rightarrow \\
 \end{align*}
 \]

 1) sodium propanoate and water
 2) sodium acetate and formaldehyde
 3) methane and sodium acetate
 4) ethanol and sodium formate
 5) none of the above

4. (2 points) Which of the following is expected to have the lowest melting point?

 1) \(\text{CH}_3(\text{CH}_2)_{20}\text{COOH}\)
 2) \(\text{CH}_3(\text{CH}_2)_{12}\text{COOH}\)
 3) it is not possible to predict

5. (2 points) Glycolipids contain what characteristic head group?

 1) sphingosines
 2) phosphates
 3) cholesterol
 4) steroids
 5) carbohydrates
6. (2 points) Which two reactants would lead to the Fischer esterification reaction intermediate shown at right?
 1) butanoic acid and methanol
 2) butanal and formic acid
 3) 1-butanone and formic acid
 4) pentanoic ester and water
 5) none of the above

7. (2 points) Hydrolysis of propyl anhydride is represented by which reaction below?

 1) ![Propyl Anhydride Reaction 1](image1)
 2) ![Propyl Anhydride Reaction 2](image2)
 3) ![Propyl Anhydride Reaction 3](image3)
 4) ![Propyl Anhydride Reaction 4](image4)

8. (2 points) Nylon-66, shown below, is an example of what kind of polymer?

 ![Nylon-66](image5)

 1) polyester 2) polycarbonate 3) polyamide 4) polyacrylate

9. (2 points) In one complete cycle of the acyl carrier protein, how many carbons are added to the growing fatty acyl chain?
 1) 1 2) 2 3) 3 4) 4 5) 8

10. (2 points) The synthesis of one molecule of glucose requires how many molecules of acetyl-CoA?
 1) 1 2) 2 3) 3 4) 4 5) 8
11. (2 points) The reactions of gluconeogenesis are simply the reactions of glycolysis run in reverse
 1) True 2) False

12. (2 points) The reaction of 2,2-dimethylpropanoic acid and LiAlH₄ in water yields:
 1) CO₂ and 2,2-dimethylbutanoic acid
 2) CO₂ and 2,2-dimethylethanoic acid
 3) water and 2,2-dimethyl-1-propanol
 4) water and 2,2-dimethyl-1-propanal
 5) nothing. No reaction occurs.

13. (2 points) Which of the following is/are Ketose(s)?
 1) 2) 3) Both 4) Neither

14. (2 points) In adenosine, shown at right, which of the following sugar centers are chiral (note that the sugar atoms are labeled \(n' \), while the base atoms are labeled \(n \)).
 1) \(1', 2', 3', 4', \) and \(5' \)
 2) \(1', 2', 3', 4', \) and \(5' \)
 3) \(1', 3', 4', \) and \(5' \)
 4) \(1', 2', 3', \) and \(4' \)
 5) \(1', 3', \) and \(4' \)

15. (2 points) Which of the following atoms in adenosine are sp² hybridized?
 1) \(1', 2', 3', 4', \) and \(5' \)
 2) \(1', 2', 3', \) and \(4' \)
 3) 1 through 8
 4) 1 through 9
 5) 1 through 9 and 5'
16. (2 points) Which Fischer representation below shows the linear form of the cyclic sugar shown at right?

![Fischer representations](image)

17. (2 points) From what parent molecules can the molecule at right be synthesized?
 1) toluene and methyl acetate
 2) benzoic acid and methanol
 3) benzene and acetic acid
 4) acetic acid and phenol

![Molecule](image)

18. (2 points) Heating the molecule at right yields which products?
 1) propanoic acid and carbon dioxide
 2) acetic acid and propanoic acid
 3) butanoic anhydride
 4) 2-butanone and carbon dioxide
 5) no reaction occurs

![Heating molecule](image)
19. (2 points) In metabolism, CoA-SH usually reacts directly with
 1) anhydrides
 2) esters
 3) alcohols
 4) carboxylic acids
 5) water

20. (2 points) In NAD and FAD the adenosine diphosphate functional group serves what purpose?
 1) It is a “handle” to help it bind to enzyme active sites
 2) It accepts a phosphate from reactants to dephosphorylate them
 3) Hydrolysis of the diphosphate helps to drive reactions
 4) It helps to bind and position the reactants
 5) It plays no role. You can remove it and what remains still functions

21. (2 points) In the Citric Acid cycle, malate reacts with NAD\(^+\). In this reaction, malate:
 1) isomerizes
 2) is phosphorylated
 3) is dephosphorylated
 4) is reduced
 5) is oxidized

22. (2 points) The negatively charged molecule carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP) binds to H\(^+\) ions in the mitochondrial intermembrane space and transports them across the inner membrane to the matrix. FCCP thus is toxic because it:
 1) prevents electron flow to dioxygen
 2) leads to the build up of lactic acid
 3) prevents synthesis of ATP via the proton translocating ATPase
 4) leads to excess protonation of acetyl-CoA
 5) inhibits phosphorylation of glucose

23. (2 points) Which listing below contains only hydrophobic amino acids?
 1) Met, Asn, Asp, Lys
 2) Met, Asn, Pro, Leu
 3) Arg, Glu, Asp, Lys
 4) Arg, Glu, Val, Phe
 5) Ile, Leu, Val, Phe
24. (2 points) In the amino acid linkage shown at right, which bonds have a high energy cost for rotation?

1) 1 2) 2 3) 3 4) 4

![Amino Acid Linkage Diagram]

25. (2 points) Which of the following is a structure typically **not** seen in the complex lipids we have seen?

1) ![Structure 1]
2) ![Structure 2]
3) ![Structure 3]

26. (2 points) Which fatty acid below is not of natural origin?

1) ![Fatty Acid 1]
2) ![Fatty Acid 2]
3) Neither are of natural origin
4) Both are of natural origin

27. Ounce for ounce, which provide lower energy yields, both in conventional combustion and in cellular metabolism?

1) carbohydrates 2) fats

28. (2 points) ATP is often hydrolyzed in order to drive unfavorable reactions. Another important and very common role for ATP that does not involve hydrolysis is:

1) reduction of carboxylic acids 2) phosphorylation of alcohols
3) oxidation of alcohols 4) oxidation of primary amines
5) cyclization of sugars
29. (2 points) What force is most dominant in driving a protein from an ensemble unfolded of states to a compact globular structure?
 1) hydrogen bonding
 2) hydrophobic collapse
 3) disulfide bonding
 4) formation of helices
 5) electrostatic attraction between charged amino acid side chains

30. (2 points) Which structural element(s) can stabilize polar groups in the interior of a protein (choose the best answer)?
 1) alpha helices
 2) beta sheets
 3) quaternary structure
 4) disulfide bonds
 5) alpha helices and beta sheets

31. (2 points) In one of the reactions of glycolysis, pyruvate reacts with NADH. What is the structure of the product?

 ![Structural formulas of glycolysis products]

32. (2 bonus points) What is the course number of this class?
 1) 250
 2) 111
 3) 496
 4) 728

Answer questions 32-39 directly on this sheet, in the spaces provided

33. (5 points) Draw the structural formulas for the major organic products of the reaction below:
34. (5 points) Draw a structural formula for the dimer formed when two molecules of acetic acid (ethanoic acid) interact by hydrogen bonding.

35. (5 points) In the Citric Acid cycle, draw the structure of the product of the reaction of succinate (shown at right) with FAD. (Hint #1: you are not expected to know this from memory, but deduce it from chemistry; Hint #2: there is no decarboxylation)

36. (5 points) Draw the product(s) of the following reaction:
37. (5 points) For the active fatty acid at right,

\[\text{Draw the structure of the immediate product of reaction with Acyl-CoA dehydrogenase.} \]

\[\text{Diagram of fatty acid} \]

38. (5 points) For the same starting fatty acid above, draw the structure of the active fatty acid resulting from one complete round of \(\beta \)-oxidation

\[\text{Diagram of fatty acid} \]

39. (3 points) Circle the anomeric carbon in the sugar at right.

\[\text{Diagram of sugar} \]

40. (5 points) Draw the Fischer projection corresponding to the linear form of the molecule shown at right.

\[\text{Diagram of sugar} \]