Quantum - Molecular Structures & Interactions

Basis of everything!
Bonding
Spectroscopy

Subfields relevant to biochemistry:

Molecular Dynamics - change over time
Molecular Mechanics - change to lowest E

Wave-Particle Duality - electrons (and everything, but...)
electrons exhibit both particle and wave properties

Electron diffraction - clear demonstration of wave.
(Just like x-ray diffraction, light diffraction).

\[\lambda = \frac{h}{mv} = \frac{\text{Planck's Const}}{\text{momentum of particle}} \]

\textit{WAVE NATURE}

Wave function: $\Psi = \Psi(x,y,z,\tau) \Rightarrow \text{FULL DESCR}$

Ψ is not useful for us

Ψ^2 is useful \Rightarrow probability predicts & distribution
Probability of finding the e^- in a small volume around x_0, y_0, z_0

\[\text{Prob} = \left[\psi_n(x_0, y_0, z_0) \right]^2 \Delta V \]

Prob for a finite volume: \(\int \left[\psi_n(x, y, z) \right]^2 \, dV \)

integral over x, y, and z

Note that

\[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\psi_n(x, y, z) \right]^2 \, dx \, dy \, dz = 1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi^2 \, dV \]

"Probability" reflects the uncertainty principle.
We can only predict probabilities.

Note: ψ describes probability for one electron

Fortunately, we're often focusing on a single valence electron, in spectroscopy, for example.
Now, but related, Concept

\[\bar{\psi} = \sum \psi_n \bar{\psi}_n \, d\mathbf{r} \]

Predicts:
- momentum
- energy
- position
- dipole moment

pp. 452-454 Give good, practical guidance.
Come back to, if you need it.

Expectation value for E (energy)

Particle in a box.

Consider an e^0 constrained as above. For $x > 0$ and $x < a$, then the e^0's potential energy is zero.

In this simple system, we define that if the e^0 strays \(\leq 0 \) or \(\geq a \), then it's energy becomes infinite.
Result (at least classically): the φ stays in the box

Q: Why "the box"?

What is it a model of? \Rightarrow orbital

Not a perfect model, but...

Define: potential energy $= U(x) \quad \text{keep this 1D for simplicity}$

$\overline{E} = \sum n = \varphi_n d\nu$

Energy $\quad \uparrow$

"Hamiltonian" operator \downarrow

describes E

p. 450 shows you that $\mathcal{H} \varphi = E \varphi$

$$\left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + U(x) \right] \varphi = E \varphi \quad (\text{1D})$$

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + U \right] \varphi = E \varphi \quad (\text{3D})$$

Don't get excited...
So for particle in a box,

\[\frac{-h^2}{2m} \frac{d^2}{dx^2} \psi_n + U(x) \psi_n = E_n \psi_n \]

\[U(x) = 0 \quad 0 < x < a \]
\[U(x) = \infty \quad x \leq 0 \quad x \geq a \]

So outside the box, the particle will not exist (infinitely high energy). \(\psi \) outside = 0

We're left with \[\frac{-h^2}{2m} \frac{d^2}{dx^2} \psi_n + \psi_n = E_n \psi_n \]

Solution is:

\[\psi = A \sin b x + B \cos b x \]

Boundary Conditions: when \(x = 0 \) \(\psi \to 0 \)

So

\[A \sin(0) + B \cos(0) = 0 \]

\[\therefore B = 0 \]

\[\psi = A \sin b x \] but \(\psi(a) = 0 = A \sin b a \)

\[\Rightarrow b x = n \pi \quad \therefore b = \frac{n \pi}{a} \]

\(\uparrow \)
\((a) \)

\[\therefore \psi = A \sin(\frac{n \pi}{a} x) \]
Finally: \(\int_0^a \gamma^2(x) \, dx = 1 \) why?

\[
A^2 \int_0^a \sin^2 \left(\frac{\pi n}{a} x \right) \, dx
\]

\[
A = \sqrt{\frac{2}{a}}
\]

\[
\gamma = \sqrt{\frac{2}{a}} \sin \left(\frac{\pi n}{a} x \right)
\]