1. The conversion of pyruvate to acetaldehyde follows the reaction

\[
\text{pyruvate} \xleftrightarrow{k_1, k_{-1}} \text{acetaldehyde + CO}_2
\]

A plot of the energy of the system as a function of progress of the reaction looks like

a) If the activation energy barrier for the forward rate constant is 80 kJ/mol at T = 300 K, will the forward rate constant increase or decrease, and by what percent, if T = 310 K?

b) The equilibrium constant for this reaction at T = 300 K is 2,800. What is the activation energy barrier for the reverse rate constant at this temperature? (Hint: What is ΔG for the net reaction?)
2. Suppose you are studying a system that has five energy levels available to particles as shown at left. Each energy level is higher in energy than the previous by an amount \(e \), and the first energy level has energy \(e \).

a) If the average energy of two particles is \(3e \), what is the most probable distribution of single particle energies?

b) How many ways can the two-particle system from part a) exist at an average energy of \(3e \)?

c) What is the entropy of the 2-particle system when its average energy is \(3e \)?

d) What is the entropy of a 3-particle system when its average energy is \(3e \)?